
Online Appendix for "A Theory of Dynamic Contracting with Fi-
nancial Constraints"

Claim 2. E = {w ∈W : wH ≥ w e
H and wL ≥ wH + κ}.

Proof. Relax the constraints set in ? ignoring the low cost cash-strapped constraint and let Ẽ
be the set of w ∈ W such that this constraints set is non-empty. As before, we construct the
sequence of sets Ẽl with Ẽl ⊆ Ẽl−1 for any l and Ẽ ⊆

⋂+∞
l=0 Ẽl = {w ∈W : wH ≥ w e

H and wL ≥

wH + κ}.
Fix a ∈ [0, κ) and b ∈ [0,w∗H ), then let Ẽol d

a,b = {w ∈W : wH ≥ b and wL ≥ wH + a} and
define Ẽnew

a,b = {w ∈W : ∃(wH ,wL) ∈ Ẽol d
a,b × Ẽol d

a,b s.t. (1)}. It follows that Ẽnew
a,b =

{
w ∈W :

wH ≥ δ
(
b + αH a

)
and wL ≥ wH + ∆θq e (θH ) + δ (αL − αH )a

}
.

So, define a0 = 0, b0 = 0 and al = ∆θq∗e (θH ) + δθ (αL − αH )al−1, bl = δ (bl−1 + αH al−1).
Finally, set Ẽl = Ẽol d

al ,bl
. The claim follows from al−1 < al < κ, bl−1 < bl < w e

H for any l with
al →l→∞ κ, bL →l→∞ w e

H . �

Claim 4.

1. Each Q∗j is concave.

2. Each Q∗j is supermodular.

3. Each Q∗j is continuously differentiable on int (W ) with

lim
wL→wH

DLQ∗j (w) = ∞ ∀ wH and lim
wH→0

DHQ∗j (w) = ∞ ∀ wL , 0

4. Each Q∗j is strictly concave in wL and wH on

H = {w ∈ int (W ) : DQ∗L(w) � 0 and DQ∗H (w) � 0}
Proof.

Part 1. The argument is standard, we need to show that the Bellman operator, defined in
(RF ), preserves concavity. Indeed, the constraint set is convex and s (θ, q ) is concave in q . So,
concavity is preserved by the Bellman operator.

Since the set of concave functions is closed in the space of continuous bounded functions,
the result follows from Theorem 3.1 and its Corollary 1 of Stokey et al. [1989].

Part 2. Again, we show that the Bellman operator preserves supermodularity. Attach slack
variables ν and uL, uH to the constraints in (RF ) and substitute the third constraint into the
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first one. In the matrix notations the constraints could be written as:

*...
,

1 0
1 0
0 1

+///
-︸     ︷︷     ︸

B

*
,

wL

wH
+
-
=

*...
,

0 0 δαL δ (1 − αL) ∆θ 1 0 1
δαL δ (1 − αL) 0 0 0 0 1 0
0 0 δαH δ (1 − αH ) 0 0 0 1

+///
-︸                                                                         ︷︷                                                                         ︸

A

*.................
,

zLL
zLH
zHL

zHH

qH
ν

uL
uH

+/////////////////
-

Of course, also zH , zL ∈ W , qH ∈ R+ and the slack variables must be non-negative, which
gives a closed convex sublattice. We ignored qL, because its value does not affect any of the
constraints.

Call the matrix on the left B and the matrix on the right A. Then, A and B satisfy the
conditions in Remark 1 of Theorem 1 of Chen et al. [2013]. These conditions are as follows:
B ′B has positive diagonal elements, non-positive off-diagonal elements and B ′A ≥ 0. So, super-
modularity is preserved by the Bellman operator.

Since the set of supermodular functions is closed in the space of continuous bounded func-
tions, the result follows from Theorem 3.1 and its Corollary 1 of Stokey et al. [1989].

Part 3. Unfortunately, the standard argument of Benveniste and Scheinkman [1979] is not
applicable in our context, because it might not to be possible to change qH keeping zL, zH
constant. Moreover, the other known result of Rincón-Zapatero and Santos [2009] also does
not have a bite.

We approach the differentiability through the uniqueness of Lagrange multipliers by apply-
ing Theorem 2 of Morand and Reffett [2015].

Consider ? and notice that the constraints set in this problem could be described by a
linear operator from l∞ to itself. We shall call this operator the constraint map. First, we argue
that the strict Slater’s condition is satisfied on int (W ). In other words, ∀w ∈ int (W ) there
exists a feasible point such that the constraint map is uniformly bounded away from 0.

Our argument is constructive, consider the cone Z ⊆ R2+ defined by

zL ≥ δ [αLzL + (1 − αL)zH ]

zH ≥ δ [αH zL + (1 − αH )zH ]

Since this cone has a non-empty interior, there is qH and a point in it satisfying zL > zH and

wL − wH > ∆θqH + δ (αL − αH )(zL − zH )

zL − zH > ∆θqH + δ (αL − αH )(zL − zH )

wL > δ [αLzL + (1 − αL)zH ]

wH > δ [αH zL + (1 − αH )zH ]

Set U (θi |ℎ t+s+1) = z i for i = L,H and ∀ℎ t+s+1 ∈ H |ℎ t and q (θH |ℎ t+s ) = qH ∀ℎ t+s ∈ H |ℎ t ,
∀s . This condition guarantees that the solution could be characterized with the Lagrangian
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approach with multipliers in l 1.
Only the incentive and cash-strapped constraints could bind for the solution

〈
U∗,q∗

〉
with

w ∈ int (W ). To see this, consider any ℎ t+s ∈ H |ℎ t for some s . Since Dq s (θH , q ) →q→0 +∞,
q∗(θH |ℎ t+s ) > 0. Then, U ∗(θL |ℎ t+s ) > U ∗(θH |ℎ t+s ) ≥ 0 by ICL(ℎ t+s ). And, CH (ℎ t+s ) with
U ∗(θL |ℎ t+s, θH ) > U ∗(θH |ℎ t+s, θH ) imply thatU ∗(θH |ℎ t+s ) > 0.

Consider the operator mapping l∞ to itself which sends
〈
U,q

〉
to the slack variables 〈ν,uL,uH〉.

This operator is clearly surjective. Therefore, by Theorem 3 of Morand and Reffett [2015], the
Lagrange multipliers are unique. Continuous differentiability follows from uniqueness of these
multipliers and concavity of the value function.

Now, we show that lim
wL→wH

DLQ∗j (w ) = +∞. First of all, DLQ∗j (w) is continuous, non-

increasing in wL by concavity, therefore ∀wH , lim
wL→wH

DLQ∗j (w ) exists in the extended real line.

For wL close to wH ,

Q∗j (w) −Q∗j (wH ,wH ) ≥ (1 − α j )s
(
θH , (wL − wH )/∆θ

)
because the solution at (wH ,wH ) is also feasible at w. Similarly, lim

wH→0
DHQ∗j (w) = ∞ ∀ wL ,

0, because qH (zH ) = 0 when wH = 0.
Part 4. Consider the problem ? and take α ∈ (0, 1). Let

〈
U∗,q∗

〉
and

〈
U∗′,q∗′

〉
be the

solutions to the problem at w ∈ H and (w ′L,wH ) ∈ H with wL > w ′L, respectively. By
the definition of H , Q∗j (w) > Q∗j (w

′
L,wH ) which implies q∗ , q∗′. Notice that

(
αU∗ + (1 −

α)U∗′, αq∗+ (1−α)q∗′
)
is feasible at αw+ (1−α)(w ′L,wH ) and it strictly improves the objective.

The similar argument establishes concavity in the other coordinate. �

Lemma . β is non-increasing in wL, non-decreasing in wH .

Proof. To prove the former part, assume its converse, namely for some wL > w ′L > wH > 0,
β (w) > β (w ′L,wH ). By Equation the first-order condition, Dq s (θH , qH ) = ∆θ β, qH (w) <
qH (w ′L,wH ). It follows from the incentive constraint that zHL(w)−zHH (w) > zHL(w ′L,wH )−
zHH (w ′L,wH ). Hence, the cash-strapped constraint implies that zHL(w ′L,wH ) < zHL(w), but
zHH (w ′L,wH ) > zHH (w). Therefore, DLQ∗H [zH (w ′L,wH )] ≥ DLQ∗H [zH (w)], on the other
hand DHQ∗H [zH (w ′L,wL)] ≤ DHQ∗H [zH (w)] by concavity and supermodularity. Invoking
the remaining first-order conditions and β (w) > β (wL,w ′H ), ρH (w) > ρH (w ′L,wH ) > ρH (w),
which is impossible.

The latter part immediatelly follows from the fact that ρL is independent of wH , supermod-
ularity and from the envelope conditions: DLQ∗L(w) = αLρL + (1 − αL) β.

�
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