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Recollect the three axioms of Mixture Space Theorem, that choices are given by preference
relation, they satisfy the independence axiom and the continuity axiom. While the third is often
regarded as a "technical" axiom, the first two have been repeatedly shown to be violated in various
experimental settings. Gilboa gives a nice explanation of what to make of violations of axioms in
Chapter 12. Specifically, we should ask– when (or in what context) is the theory still useful, even
though the axioms it rests on have been shown to be violated in certain settings, and when is it not.

1 Alias’ paradox

The most famous violation of the independence axiom is due to Alias, and is often referred to as
the Alias’ paradox. For a nice exposition, read Section 1.2 and look at Figure 1 and 2 in "The two
faces of independence: betweenness and homotheticity" by Burghart, Epper and Ernst Fehr.

One of the fixes to rationalize Alias type behavior is to give up the independence axiom and
invoke the betweenness axiom.

2 Dekel’s betweenness

Let X = [x, x̄] ⊂ R, x < x̄ , be the set of prizes. Let L denote the set of all simple lotteries on [x, x̄].
Let % be a binary relation on X .

A note on notation. We will use x, x, x̄ both as members of X and also as degenerate lotteries.
So when we are talking about lotteries, x would mean δx , etc.

Axiom 1: % is a preference relation, with x̄ � x.

Axiom 2 (Solvability): For all p, q, r ∈ L, p � q � r implies there exists a ∈ (0, 1) such that
ap + (1 − a)r ∼ q .

Axiom 3 (Monotonicity): For all x, y ∈ X , p ∈ L, and a ∈ (0, 1), x > y implies ap + (1 −
a)x � ap + (1 − a)y.

Axiom 4 (Betweenness): For all p, q ∈ L and a ∈ (0, 1), p � q implies p � ap+ (1− a)q � q ,
and p ∼ q implies p ∼ ap + (1 − a)q .
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Lemma 1. p � q and 0 ≤ a < b ≤ 1 =⇒ bp + (1 − b)q � ap + (1 − a)q.

Proof. If a = 0 or b = 1, then the result follows from Axiom 4. So, let 0 < a, b < 1. Now,
by Axiom 4, we know that p � ap + (1 − a)q . For any c ∈ (0, 1) consider the lottery c p + (1 −
c)[ap + (1 − a)q] = [c + (1 − c)a]p + [(1 − c)(1 − a)]q . Using Axiom 4 again, we know that
p � [c + (1 − c)a]p + [(1 − c)(1 − a)]q � ap + (1 − a)q . Finally we want to choose c such that
c + (1 − c)a = b , that is, c = b−a

1−a . Clearly, this c lies in (0, 1) and by the choice of c , we get
bp + (1 − b)q � ap + (1 − a)q . �

Lemma 2. If x > y, then x � y.

Proof. Let x > y. Fix a ∈ (0, 1). Then by Axiom 3,

x = ax + (1 − a)x � ax + (1 − a)y

= (1 − a)y + ax

� (1 − a) + a(y) = y .

�

Theorem 1. % satisfies Axioms 1-4 iff there exist functions u : X × [0, 1] → R and V : L → [0, 1]
such that V is onto, u is continuous in its second argument, strictly increasing in the first argument, V
represents %,

V (p) =
∑
x

u(x,V (p))p(x)

and p % q iff ∑
x

u(x,V (p))p(x) ≥
∑
x

u(x,V (p))q(x), and∑
x

u(x,V (q))p(x) ≥
∑
x

u(x,V (q))q(x)

Proof. We break the proof into logical steps.
Step 1. Construct V that represents %. For all p ∈ L, we know by Axiom 2 that there exists
a ∈ [0, 1] such that p ∼ ax̄ + (1 − a)x . define V (p) = a.We claim that V is well defined and
represents %. Suppose p ∼ ax̄ + (1 − a)x and p ∼ b x̄ + (1 − b)x , where a, b ∈ [0, 1]. Then,
ax̄ + (1 − a)x ∼ b x̄ + (1 − b)x . Using lemma 1, it is clear that a = b . Thus, V is well defined.

Next, we show that V represents %. Let p, q ∈ L. Suppose V (p) = V (q) = a. Let p ∼
ax̄+(1− a)x ∼ q . Next, supposeV (p) > V (q). LetV (p) = a andV (q) = b . We want to show that
p � q . Suppose q % p. If q ∼ p, then by definition ofV , b x̄ + (1−b)x ∼ ax̄ + (1− a)x . Again using
lemma 1, we get a = b which is a contradiction. If q � p, then we have b x̄+(1−b)x � ax̄+(1−a)x .
lemma 1 implies b > a, contradiction. Thus, we must have p � q .

Thus, we have shown V (p) = V (q) implies p � q and V (p) > V (q) implies p � q . This
equivalently shows that V represents %.
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Step 2. Constructing u(.,.). Now for any degenerate lottery x ∈ L/{x, x̄} and a ∈ (0, 1), only
one of the following holds:(i) x ∼ ax̄ + (1 − a)x , (ii) x � ax̄ + (1 − a)x , or (iii) a x̄ + (1 − a)x � x .
For each of the cases define u(x, a) in the following way.

(i) x ∼ ax̄ + (1 − a)x . Let u(x, a) = a.

( ii) x � ax̄ + (1 − a)x � x . Then, we know by Axiom 2 that there exists b ∈ (0, 1] such that
b x̄ + (1 − b)x ∼ ax̄ + (1 − a)x . Define u(x, a) = a

b .

( iii) x̄ � ax̄ + (1 − a)x � x . Then, we know by Axiom 2 that there exists b ∈ [0, 1) such that
b x̄ + (1 − b)x ∼ ax̄ + (1 − a)x . Define u(x, a) = a−b

1−b .
1

Further, define u(x̄, a) = 1 and i = u(x) = 0 for all a ∈ (0, 1). Finally, what about u(x, a) when
a ∈ {0, 1}? Since u will be shown to be continuous in the second argument in the interval (0, 1),
we extend the definition of u(x, a) to the closed interval by continuity.

Step 3. u(x,.) is continuous on (0, 1) and u(., a) is strictly increasing on X. First continuity. Fix
x ∈ X . If x ∈ { x̄, x}, then u(x, .) is a constant function, and hence continuous on (0, 1). So, let
x ∈ X/{ x̄, x}. Define B(x) = {a |ax̄ + (1 − a)x ∼ x}. By Axiom 2, we know the set is nonempty.
Note that Axiom 4 and lemma 1 =⇒ B(w) = [ā, 1) for some ā. Next, as we did in the construction
of u, for a fixed a ∈ (0, 1], there exists b ∈ (0, 1] such that b x̄ + (1 − b)x ∼ ax̄ + (1 − a)x . This
implicitly defines a function b(a). Clearly, b(ā) = 0 and b(1) = 1. Also, staring at lemma 1 a little
bit, it is clear that b(.) should be increasing. Now, we show that b(.) is continuous. If not, then there
exists a sequence an ↑ a in B(x), such that b(a) > l im b(an). So, for b̂ satisfying b(a) > b̂ > b(an),
it is clear that ax̄ + (1− a)x � b̂ x̄ + (1− b̂)x � an x̄ + (1− an)x for every n ∈ N. Hence, there exists
a (unique) â such that b̂ x̄ + (1 − b̂)x ∼ â x̄ + (1 − â)x and â ∈ (an, a) for every n. But this cannot
be true since an ↑ a. So, we must have b(.) continuous. Now, recall that by construction of u, we
know that u(x, a) = a−b(a)

1−b(a) for a ∈ (ā, a), and u(x, ā) = ā. So, clearly u(x, .) is continuous on [x̄, 1).
Similarly, we can show that it is continuous on (0, ā].

It is easy to check that u is strictly increasing in the first argument. Fix a ∈ [0, 1] and let x > y
(and thus x � y ). Let p = ax̄ + (1 − a)x . If x � p � y, then by construction u(x, a) > a > u(y, a).
Consider the case when x � y � p. Then, by construction u(x, a) = a

b where b x + (1 − b)x ∼ p,
and u(x, a) = a

b ′ where b ′y + (1−b ′)x ∼ p. We claim that b ′ > b . Suppose b ′ = b . Then by Axiom
5, (1 − b)x + b x � (1 − b ′)x + b ′y, which is a contradiction. Suppose b ′ > b . Then,

b x + (1 − b)x = (1 − b)x + b x

� (1 − b)x + by (by Axiom 3)

= by + (1 − b)x

� b ′y + (1 − b ′)x (by lemma 1)

1These definitions are not randomly being pulled out of a hat. Suppose a linear U that represents % and U (x̄) =
1, U (x) = 0. Then, in case (ii), b x + (1− b)x ∼ ax̄ + (1− a)x would implyU (b x + (1− b)x) = U (ax̄ + (1− a)x), that is
bU (x) + (1 − b)U (x) = aU (x̄) + (1 − a)U (x). Thus, bU (x) + 0 = a + 0, which impliesU (x) = a

b . Similarly for (iii).
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which is a contradiction. Thuswemust have b ′ > b , which implies a
b >

a
b ′ , that is, u(x, a) > u(x, b).

The case p � x � y can be similarly done.
Step 4. Bridge u and V . DefineU (p, a) =

∑
x u(x, a)p(x). We aim to show that

U (p,V (p)) = V (p)

Suppose p = ax̄ + (1 − a)x for some a ∈ [0, 1]. Then, V (p) = a and U (p,V (p)) = U (p, a) =
au(x̄, a) + (1 − a)u(x, a) = aV (p).

Next, suppose p = x for some x ∈ X . If p = x̄ then, U (p,V (p)) = u(x̄,V (x̄)) = u(x̄, 1) = 1 =
V (p). Similarly for p = x . Now let p = x , where x ∈ (x, x̄) Then, U (p,V (p)) = u(x,V (p)) and
p = x ∼ V (p)x̄ + (1 − V (p))x . We know by lemma 2 that x < x < x̄ implies x̄ � x � x . Thus,
V (p) ∈ (0, 1). So, we are in part (i) of the definition of u. Therefore, U (p,V (p)) = u(x,V (p)) =
V (p), as desired.

Now, suppose p = b x + (1 − b)x , where b ∈ (0, 1] and x ∈ (x, x̄). Then, by definition,
V (p)x̄ + (1 −V (p))x ∼ p. Thus we have b x + (1 − b)x ∼ V (p)x̄ + (1 −V (p))x ∼ p. Therefore, by
construction, u(x,V (p)) = V (p)

b . Hence, we get U (p,V (p)) = bu(x,V (p)) + (1 − b)u(x,V (p)) =
b V (p)

b = V (p). The case where p = b x̄ + (1 − b)x, b ∈ [0, 1) can be similarly done.
For any p ∈ L, let

S̃p = {x ∈ X |x < {x, x̄} and p(x) > 0}, and k(p) = |S̃p |.

To complete the argument for this step we will use induction on k(p). If k(p) = 0, then p =
ax̄+(1−a)x for some a ∈ [0, 1], and we already covered this case. Let n ≥ 0, andU (p,V (p)) = V (p)
for all p such that k(p) = n. Now let k(p) = n + 1, thus k(p) ≥ 1. We want to show that
U (p,V (p)) = V (p). Pick x ∈ S̃p . Then, p = c x + (1 − c)q for some c ∈ (0, 1) and q ∈ L such that
k(q) = n.

If x ∼ p, then we claim that q ∼ p. Suppose p � q . Then, x � q . By Axiom 4, x �
c x + (1 − c)q = p, a contradiction. Suppose q � p. Then, q � x . By Axiom 4, p = c x + (1 −
c)q � x , contradiction. Thus, we must have q ∼ p. Note that V (q) = V (p) = V (x) and by
inductive hypothesis, U (q,V (q)) = V (q). Thus, U (p,V (p)) = cu(x,V (p)) + (1 − c)U (q,V (p)) =
cu(x,V (x)) + (1 − c)V (q) = cV (x) + (1 − c)V (q) = V (p).

Now consider the case where x � p. Let b̂ = p(x) > 0. Then, we know that p = b̂ x + (1 − b̂)q
where q ∈ L such that k(q) = n. Now, x̄ � x � p � q � x . (q = { x̄} is not possible and q = {x}
has already been covered as special case). By Axiom 2, choose b1, b2 ∈ (0, 1) such that

p1 = b1x + (1 − b1)x ∼ p, and

p2 = b2 x̄ + (1 − b2)q ∼ p

Then, V (p1) = V (p2) = V (p). Further,U (p1,V (p)) = U (p1,V (p1)) = V (p1) by the earlier special
case. Also, since k(p2) = n, by the induction hypothesis U (p2,V (p)) = U (p2,V (p2)) = V (p2).
Thus,U (p1,V (p1)) = U (p2,V (p2)) = V (p). Let V (p) = a.
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It is possible to find c1 and c2 ∈ [0, 1] such that

c1p1 + (1 − c1)p2 = c1[b1x + (1 − b1)x] + (1 − c2)[b2 x̄ + (1 − b2)q]

= c2[ax̄ + (1 − a)x] + (1 − c2)[b̂ x + (1 − b̂)q]

= c2[ax̄ + (1 − a)x] + (1 − c2)p .

Sincep ∼ p1 ∼ p2 ∼ c1p1 + (1 − c1)p2 (Axiom 4) we have a = V (p) = V (p1) = V (p2) = V (c1p1 +
(1 − c1)p2). Thus, we get,

U (c1p1 + (1 − c1)p2,V (c1p1 + (1 − c1)p2)) = c1U (p1,V (p1)) + (1 − c1)U (p2,V (p2))

= c1V (p1) + (1 − c1)V (p2)

= V (p).

Thus,

V (p) = U (c2[ax̄ + (1 − a)x] + (1 − c2)p, a)

= c2U (ax̄ + (1 − a)x, a) + (1 − c2)U (p, a)

= c2V (p) + (1 − c2)U (p, a).

This implies, U (p, a) = V (p), that is, U (p,V (p)) = V (p). Therefore, U (p,V (p)) = V (p) for all
p ∈ L, as desired.

Step 5. p % q iff the two inequalities in the statement hold. If p ∼ q , then V (q) = V (p).
Thus, U (p,V (p)) = U (q,V (q)) = U (p,V (q)) = U (q,V (p)) and the inequalities hold trivially.
Suppose p � q . The case where p = x̄ or q = x are straightforward so we look at the case
where x̄ � p � q � x . Then, there exists b ∈ (0, 1) such that b x̄ + (1 − b)q ∼ p. This implies
U (p,V (p)) = U (b x̄ + (1 − b)q,V (p)) = b + (1 − b)U (q,V (p)) ≥ U (q,V (p)) ≥ U (q,V (p)), with
equality iff U (q,V (p)) = 1. Again by Axiom 2, there exists c ∈ (0, 1) such that c p + (1 − c)x ∼ q .
This implies U (q,V (q)) = U (c p + (1 − c)x, q) = cU (p,V (q)) ≤ U (p,V (q)), with equality iff
U (p,V (q)) = 0.

Now, U (q,V (p)) = 1 is possible only if p = x̄ which we have ruled out. Similarly, we cannot
have U (p,V (q)) = 0. Thus, we have established that p � q =⇒ U (p,V (p)) > U (q,V (p)) and
U (p,V (q)) > U (q,V (q)). Conversely supposewe haveU (p,V (p)) ≥ U (q,V (p)) andU (p,V (q)) ≥
U (q,V (q)). If q � p, then by the above arguments we will have U (q,V (p)) > U (p,V (p)) and
U (q,V (q)) > U (p,V (q)), which is a contradiction. Thus, we have p % q , and we have proved the
second part of the theorem as well. �

Dekel argues for the suitability of the representation in many ways, one of which is the rela-
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tionship between concavity and risk aversion. Say that % on L is risk averse if

Proposition 1. Let u and V represent % as described in Theorem 1. Then, % is risk-averse iff u in the
first argument.

Proof. �

3 Gul’s disappointment aversion
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