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Kreps says "Savage’s theory, which is the crowning glory of choice theory,.." Fishburn states
"The most brilliant axiomatic theory of utility ever developed is, in my opinion, the expected
utility theory of Savage." Before starting the class on Savage, Faruk Gul looked at us in zen state
and exclaimed, "This is a big lecture for us, we will learn Savage"

0 Preliminaries, axioms and representation theorem

Let X be an arbitrary set of prizes and Ω be an arbitrary set of states. A Savage act is a function
f : Ω→ X . Let F be the set of all Savage acts (given X and Ω). Let A be the algebra of all subsets
of Ω. A function µ : A → R is called a probability measure if it satisfies the following condition:
(i) µ(Ω) = 1, (ii) µ(A) ≥ 0 for all A ∈ A, and (iii) µ(A ∪ B) = µ(A) + µ(B) whenever A, B ∈ A
such that A ∩ B = ∅.

Let % be a binary relation on F . We write x ∈ F to denote the constant act that always yields
x . We state the Savage axioms:

Axiom 1: % is a preference relation.

Axiom 2: ∃x, y ∈ X such that x � y.

Let A ⊂ Ω. Define f Ag to be the act ℎ where,

ℎ(s) =
{ f (s) if s ∈ A
g (s) if s < A

Definition 1. Let A ⊂ Ω. Then, A is said to be null if f Aℎ ∼ gAℎ for all f , g, ℎ ∈ F .

Back to the axioms.

Axiom 3: For each ℎ ∈ H , non-null A and x, y ∈ X , x % y iff xAℎ % yAℎ.

Axiom 4: Let f , g, ℎ ∈ F . Then, f Aℎ % gAℎ =⇒ f Aℎ′ % gAℎ′ for all ℎ′ ∈ F .1

1Note that Axiom 4 and Axiom 1 imply the following version also exists

∀ f , g, ℎ ∈ F , f Aℎ % gAℎ =⇒ f Aℎ
′

� gAℎ
′ ∀ℎ′ ∈ F .
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Given Axiom 4, we can define conditional preference. We say that f % g given A if f Aℎ % gAℎ
for all ℎ ∈ F . Note that A is null iff f � g given A for all f , g ∈ F .

Axiom 5: Let x, y, x ′, y ′ be such that x � y and x ′ � y ′. Then for all A, B ⊂ Ω, xAy %
xBy =⇒ x ′Ay ′ % x ′By ′.

Axiom 6: Let any x ∈ X and f , g ∈ F such that f � g . then ∃ a finite partition,
{A1,A2, . . . ,An}, of Ω such that xAi f � g and f � xAi g for all i = 1, 2, . . . , n.

Let F0 = { f ∈ F | | f (Ω)| < ∞} ⊂ F . That is, we define F0 to be the set of all simple acts on Ω.
Another way to think about this restriction is that we take the set of prizes X to be a finite set.

We now set on a long and exciting journey below with an eventual aim of proving the following
main result.

Theorem 1. (Savage). Let % be a binary relation on F0. Then, % satisfies Axioms 1-6 iff ∃ a non-
constant function u : X → R and a probability measure µ : A → [0, 1] on (S,A) such that the
functionW : F → R defined by

W ( f ) =
∑
x∈X

u(x)µ( f −1(x))

represents %. Furthermore ifW ′ defined byW ′

( f ) =
∑
x∈X

u′(x)µ′( f −1(x)) also represents %, then u′ =

a + bu for some b > 0 and µ′ = µ.

The extension of the result from F0 to F requires an additional axiom.

Axiom 7: Let any f , g ∈ F and any A ⊂ Ω. Then

f % g (s) given A ∀s ∈ A⇒ f % given A, and

f (s) % g given A ∀s ∈ A⇒ f % g given A.

Theorem 2. (Generalization to arbitrary acts). Let% be a binary relation on F . Then,% satisfies Axioms
1-7 iff ∃ a non-constant function u : X → R and a probability measure µ : A → [0, 1] on (S,A) such
that the functionW : F → R defined by

W ( f ) =
∫

x∈X

u(x)µ( f −1(x))dx

represents %. Furthermore ifW ′ defined byW ′

( f ) =
∫

x∈X
u′(x)µ′( f −1(x)) also represents %, then u′ =

a + bu for some b > 0 and µ′ = µ.

In what follows, we will proof Theorem 1, and the proof is divided into four parts, split into
the next four sections.
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1 Qualitative probability

Suppose A, B ∈ A. then, what does it mean to say

"I believe that event A is more likely than event B ."

What does the DM mean by ’more likely’? Since choice theory is all about dealing in proba-
bilities, how about an isomorphism between ’more likely’ and ’more probable’? An intuitive way
would be the following. Define a binary relation %∗ onA, so that A %∗ B represents A being more
likely then B . We want to find a probability measure µ : A → [0, 1] such that

A %∗ B iff µ(A) ≥ µ(B)

This section is devoted to the search of such a nice binary relation and probability measure. Let’s
make things formal.

Definition 2. A binary relation %∗ onA is called a qualitative probability if

(a) %∗ is a preference relation,

(b) A %∗ ∅ ∀A ∈ A,

(c) Ω �∗ ∅, and

(d) ∀A, B,C ∈ A, [A ∩C = B ∩C = ∅] =⇒ [A �∗ B iff A ∪ B �∗ B ∪C ].

Moreover %∗ is said to be divisible if for all A, B ∈ A such that A �∗ B , there exists a finite
partition {C1,C2, . . . ,Cn} of Ω such that A �∗ B ∪Ci , for all i = 1, 2, . . . , n.

The next obvious question is, given a binary relation % on F that satisfies the axioms stated
above, can we find a qualitative probability on A? Or better still, can we find one that is divisible?

Yes of course! We do precisely that in the next theorem.

Definition 3. For any A, B ∈ A, we say that A %∗ B if for all x, y ∈ X such that x � y, we have that
xAy % xBy. also, A �∗ B and A ∼∗ B are defined in the usual way as ¬B %∗ A and [A %∗ B and
B %∗ A], respectively.

Note that Axiom 2 ensures that there exists x, y ∈ X such that x � y and by Axiom 5 it does
not matter which x and y are used, that is, in the definition we could have used "for some x and y"
instead of "for all x and y".

Also note that A �∗ B implies xAy � xBy. This is because A �∗ B implies xAy % xBy.
Suppose xBy % xAy. Then since x � y, by definition, B %∗ A, which is a contradiction. Therefore,
xAy % xBy and ¬xBy % xAy, implying xAy � xBy.

From now on, whenever we talk about %∗, we mean the above defined binary relation on A.

Lemma 1. Suppose Axioms 1-5 hold. Then %∗ is a qualitative probability onA. If in addition Axiom
6 holds, then %∗ is also divisible.
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Proof. �

Remark 1. Aslo, note that A ∈ A is null iff A ∼∗ ∅. Suppose A is null. Then, by definition xAy ∼ yAy.
This implies xAy ∼ y∅y. Thus, by definition A ∼∗ ∅. Conversely, let A ∼∗ ∅. Suppose A is not
null. Then, by Axiom 3 we have xAy � yAy. This implies xAy � y∅y, thus A �∗ ∅ by definition,
contradiction.

Now that we have the desired nice binary relation on the set of events, our next step is obviously
to manufacture the probability measure ’isomorphic’ to it. The next theorem does it for us.

Proposition 1. Suppose Axioms 1-6 hold. Then there exists a unique probability measure µ on (Ω,A)
such that

(1) ∀A, B ∈ A. A %∗ B iff µ(A) ≥ µ(B), and

(2) ∀A ∈ A and ρ ∈ [0, 1], there exists B ∈ A, such that µ(B) = ρµ(A).

Proving this result requires some preparation first, which will come in the form of the following
lemma.

Lemma 2. Let A, B,C ,D ∈ A, and %∗ is a divisible qualitative probability onA. Then,

1. B ⊂ C =⇒ Ω %∗ C %∗ B %∗ ∅.

2. (∼∗) [A ∼∗ B,A ∩C = ∅] =⇒ A ∪C %∗ B ∪C.

3. (�∗) [A �∗ B,A ∩C = ∅] =⇒ A ∪C �∗ B ∪C.

4. (∼∗) [A ∼∗ B,C ∼∗ D,A ∩C = ∅] =⇒ A ∪C %∗ B ∪ D.

5. (�∗) [A %∗ B,C �∗ D,A ∩C = ∅] =⇒ A ∪C �∗ B ∪ D.

6. [A ∼∗ B,C ∼∗ D,A ∩C = B ∩ D = ∅] =⇒ A ∪C ∼∗ B ∪ D.

7. A �∗ ∅ =⇒ A can be partitioned into two events B and C for which B �∗ ∅ and C �∗ ∅.

8. [A, B, and C are pairwise disjoint , A %∗ B, B ∪ C �∗ A] =⇒ there exists D ⊂ C such that
D �∗ ∅ and B ∪ (C /D) �∗ A ∪ D.

9. [A �∗ ∅, B �∗ ∅,A∩ B = ∅] =⇒ B can be partitioned into C and D such that A∪C %∗ D %∗ C.

10. A �∗ ∅ =⇒ A can be partitioned into B and C such that B ∼∗ C.

11. A �∗ ∅ =⇒ for any positive integer n there is a 2n part partition of A such that ∼∗ holds between
each two events n the partition.

Proof. �

Now we get back to proving our result. Note that in view of part 11 of the lemma 2 above we
shall call a partition {A1,A2, . . . ,An} of A a u.p. (uniform partition) if A �∗ ∅ and A1 ∼

∗ A2 ∼
∗

. . . ∼∗ An.
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Proof of proposition 1. It is a long proof. So we shall divide into various steps.
Step 1. Suppose {A1,A2, . . . ,An} is a n-part u.p. of Ω. Let A ∈ A. Define

k(n,A) = max{k |A %∗
k⋃
j=1

A j }.
2

Then we show that the function k(n, .) is well defined, that is k(n, .) does not depend on the
particular n-partition chosen. Let {A1,A2, . . . ,An} is a u.p. of Ω such that k(n,A) = k. Let
{B1, B2, . . . , Bn} be another u.p. of Ω. Then we claim that Bi ∼

∗ A j for all i, j . Suppose Bi′ �
∗ Ai′

for some i ′, j ′. Then, by transitivity, Bi �
∗ A j for all i, j . Since partitions are disjoint by definition,

therefore by repeated use of lemma 2(5.) we get Ω ∼∗
⋃m

j=1 B j �
∗
⋃n

j=1 A j ∼
∗ Ω, which gives us a

contradiction. Thus, indeed we have Bi ∼
∗ A j for all i, j which gives us that k(n, .) is well defined.

Step 2. Recall that for each integer n there exists a n-part u.p. of Ω. From here on we shall talk
about 2n-part partitions pfΩ. Let the function k be defined as above. Define a function µ : A → R
by

µ(A) = lim
n→∞

k(2n,A)
2n

∀A ∈ A.

Note that for a fixed A, k(2n,A)
2n is increasing in n. We claim that µ is a probability measure on (Ω,A)

and µ(A) ≥ µ(B) =⇒ A %∗ B . First we show that µ is a probability measure on (Ω,A).

( i) For a u.p. {A1,A2, . . . ,A2n } ofΩ,
⋃2n

j=1 A j ∼
∗ Ω, which impliesΩ %∗

⋃2n
j=1 A j . Thus,

k(2n,Ω)
2n =

1 for all n. Hence, µ(Ω) = 1.

(ii) By definition, k(2n,A) ≥ 0 for all n. Thus µ(A) ≥ 0.

(iii) Let A and B in A be such that A ∩ B = ∅. We want to show that µ(A ∪ B) = µ(A) + µ(B).
First we shall develop a definition similar to k(n, .). Define

l (n,A) = min{l |
l⋃
j=1

A j �
∗ A}

Note that as for k, we can symmetrically argue that l (n, .) is well defined and l (2n,A)
2n is decreas-

ing in n.
We claim that limn

k(2n,A)
2n = limn

l (2n,A)
2n . It is clear by definitions that k(2n,A)

2n ≤
l (2n,A)
2n .

Thus, limn
k(2n,A)

2n ≤ limn
l (2n,A)
2n . Suppose limn

k(2n,A)
2n < limn

l (2n,A)
2n . then, since { r

2n |r =
0, 1, 2, . . . , 2n; n = 0, 1, 2, 3, . . .} is dense in [0, 1], therefore for sufficiently large n, there ex-
ists r such that k(2n,A)

2n < r
2n < l (2n,A)

2n . Since %∗ is complete, therefore A %∗
⋃r

j=1 A j or⋃r
j=1 A j %

∗ A which implies k(2n,A)
2n ≥ r

2n or l (2n,A)
2n ≤ r

2n . Contradiction.
Now, we show that µ(A∪B) ≥ µ(A)+ µ(B). For each n, let k(2n,A) = knA and k(2n, B) = knB .

2Note that we could have equivalently said k(n,A) is the largest number k such aah A %∗ B where B is the union of
k elements of the n-part u.p. But, by fact that all members of partition are indifferent and lemma 2 we can use take the
first k scripted members of the u.p.
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Then, by definition, A %∗
⋃knA

j=1 A j and B %∗
⋃knB

j=1 A j . Now this is a delicate argument. Note
that A ∩ B = ∅ implies that knA + knB ≤ 2n. We can choose IA, IB ⊂ {1, 2, . . . , 2n} such that
|IA | = knA, |IB | = knB and IA∩ IB = ∅. Thus, A ⊃

⋃
j ∈IA A j and B ⊃

⋃
j ∈IB A j .3. Thus, we have

A ∪ B ⊃
⋃

j ∈IA∪IB A j . By definition,

k(2n,A ∪ B) ≥ |IA ∪ IB |

= |IA | + |IB |

= k(2n,A) + k(2n, B)

∴ lim
n

k(2n,A ∪ B)
2n

≥ lim
n

k(2n,A)
2n

+ lim
n

k(2n, B)
2n

i.e. µ(A ∪ B) ≥ µ(A) + µ(B)

We can similarly show that µ(A) + µ(B) ≥ µ(A ∪ B) by playing around with l (2n, .) instead
and then using the fact that µ(A) = limn

k(2n,A)
2n = limn

l (2n,A)
2n .

Step 3. Now that we have a nice probability measure, we want to show that A %∗ B iff
µ(A) ≥ µ(B).

( i) A %∗ B =⇒ µ(A) ≥ µ(B). Suppose A %∗ B . Then for any k such that B %∗
⋃k

j=1 A j , we
have A %∗

⋃k
j=1 A j . This implies, k(2n,A) ≥ k(2n, B) for all n. Thus, µ(A) ≥ µ(B).

( ii) A �∗ ∅ =⇒ µ(A) > 0. Suppose A �∗ ∅. Since %∗ is divisible, therefore, there exists a
partition {C1,C2, . . . ,Cm} of Ω such that A �∗ Ci for all i = 1, 2, . . . ,m. This implies by (i)
above that µ(A) ≥ µ(Ci). but then by finite additivity, we must have µ(A) ≥ µ(Ω) = 1. Thus,
µ(A) > 0.

(iii) A �∗ B =⇒ µ(A) > µ(B). Suppose A �∗ B . We claim that there exists C ∈ A such that
C �∗ ∅, B ∩C = ∅, and A �∗ B ∪C . Define D = Ω\B . Then, by part 1 of lemma 2 we know
that D , ∅. Thus, D %∗ ∅. We claim that D �∗ ∅. Suppose D ∼∗ ∅. Then, by lemma 2(5.),
we get A �∗ B ∪ D = Ω, a contradiction. Thus D �∗ ∅. Then, by lemma 2(10.), we know
that D can be partitioned into C1 and C2 such that C1 ∼

∗ C2 �
∗ ∅. If A �∗ B ∪ Ci , we are

done. If not, then partition one of the Ci ’s again and so on. Eventually we will get a set C
such that C ⊂ D and A �∗ B ∪C . If we don’t then it violates the fact that %∗ is divisible.

Clearly (i) and (ii) imply A %∗ B iff µ(A) ≥ µ(B).
Step 4. Let A ∈ A and ρ ∈ [0, 1]. We want to show that there exists B ∈ A such that

µ(B) = ρµ(A). If µ(A) = 0, the result is obvious, just choose B = ∅. So assume µ(A) > 0 Now
consider a sequence {A1

1,A
1
2}, {A

2
1, . . . ,A

2
4}, . . . , {A

n
1, . . . ,A

n
2n }, . . .of 2

n-part u.p. of A for which

3It’ll be nice to stare at lemma 2 and footnote 2 at this point.
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{An
2i−1,A

n
2i} is a 2-part u.p. of A

n
i .

A = A1
1 ∪ A1

2

A1
1 = A2

1 ∪ A2
2,A

1
2 = A2

3 ∪ A2
4

A2
1 = A3

1 ∪ A3
2,A

2
2 = A3

3 ∪ A3
4,A

2
3 = A3

5 ∪ A3
6,A

3
4 = A3

7 ∪ A3
8

...

Note that nth member of the sequence forms a 2n-part partition of A. Now, for a given n let
m = sup{i |µ(∪ij=1A

n
j ) < ρµ(A)} so that

µ(∪mj=1A
n
j ) + 2

−nµ(A) ≥ ρµ(A)

and let k = inf{i |µ(∪2nj=iA
n
j ) < (1 − ρ)µ(A)} so that

µ(∪2
n

j=kA
n
j ) + 2

−nµ(A) ≥ (1 − ρ)µ(A)

The two inequalities above are basically consequences of the definition of definition of supremum
and infimum.

Next, let Cn = ∪
m
j=1A

n
j and Dn = ∪

2n
j=kA

n
j . Then by construction, C1 ⊂ C2 ⊂ . . . ,D1 ⊂ D2 ⊂

. . . , andCi∩D j = ∅ for all i, j . Also, µ(Cn) ≥ ρµ(A)−2−nµ(A) and µ(D) ≥ (1− ρ)µ(A)−2−nµ(A).
Taking limits on both sides of the inequalities, we get ρµ(A) ≤ µ(∪nCn) and (1 − ρ)µ(A) ≤
µ(∪nDn). Thus,

µ(A) = ρµ(A) + (1 − ρ)µ(A) ≤ µ(∪nCn) + µ(∪nDn)

Since (∪nCn) ∩ (∪nDn) = ∅, thus by finite additivity

µ(∪nCn) + µ(∪nDn) = µ((∪nCn) + (∪nDn))

≤ µ(A) (∵ Cn,Dn ⊂ A ∀n)

�

2 Constructing a lottery space on X

Document a simple result.

Lemma 3. For all A ∈ A, µ(A) = 0 iff A is null.

Proof. Follows from remark 1 and the fact that µ represents %∗. �

Next we define our probability measure on the space of prizes X , which is induced by the
measure µ we constructed above.
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Definition 4. For f ∈ F , let p f on X be defined by p f = µ ◦ f −1.

Let F0 = { f ∈ F | | f (Ω)| < ∞} ⊂ F . That is, we define f to be the set of all simple acts on
Ω. Also, as always let L be the set of probability measures on X .4 Let L0 be the set of simple
probability measures (lotteries) on X .

Proposition 2. For all f ∈ F0, p f ∈ L0.

Proof. �

3 Constructing a preference relation on L0

In order to construct a preference on L0, we want to show that L is "good" mapping. Next, we
show that L is onto and is one-one only up to indifference. That is, L( f ) = L(g ) =⇒ f ∼ g .

Proposition 3. L : F0 → L0 is onto, and (L f ) = L(g ) =⇒ f ∼ g .

The proof for onto is relatively straightforward, but for one-one is quite detailed. We shall use
two lemmas in proving the latter result.

Lemma 4. Let A ∈ A and {A1,A2, . . . ,An} be a partition of A. Then, f Aiℎ % gAiℎ for all i =
1, . . . , n =⇒ f Aℎ % gAℎ.

Proof. �

Lemma 5. Let A, B ∈ A such that A ∩ B = ∅. Then, xA(yBℎ) ∼ yA(xBℎ).

Proof. �

Proof of proposition 3. �

Next we do the important step of defining a preference relation on L0. It will be induced by
preference relation % on F .

Proposition 4. For any p, q ∈ L, let p %l q iff f % g for all f , g ∈ F0 such that p = p f and q = pg .
Then %l is a well defined preference relation on L0.

Proof. Let p, q ∈ L0. Since L is onto, therefore, ∃ f and g in F0 such that p = p f and q = pg . Also,
by theorem 3 it is clear that if there is any other f ′ ∈ F0 such that p = p f ′, then f ∼ f ′ (similarly
for g ). Thus, the binary relation is indeed well defined. In fact to be clear on that, with a slight
abuse of notation, we can write p %l q iff L−1(p) % L−1(q).

Next we show that %l is a preference relation. Let p = p f and q = pg ∈ L0. Since % is complete,
we have f % g or g % f . Thus, by definition, p %l q or q %l p. Next, let p = p f , q = pg and
r = pℎ ∈ L0 such that p %l q and q %l r . Then f % g and g % ℎ. Since % is transitive, f % ℎ.
Thus, p %l r . �

4more precisely on the algebra of the set of all subsets on X .
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4 Invoking the Mixture Space Theorem

Once we have constructed a binary relation on L0, we are ready to invoke the Mixture Space
Theorem. It is easy to record that (L0,+, .) is a mixture space. The following lemma establishes
that the three axioms for the mixture space theorem hold.

Lemma 6. %l on L0 satisfies the mixture space axioms:

1. %l is a preference relation.

2. For all p, q, r ∈ L0, p �l q and a ∈ (0, 1) =⇒ ap + (1 − a)r �l aq + (1 − a)r .

3. For all p, q, r ∈ L0, p �l q �l r =⇒ ∃ a, b ∈ (0, 1) such that ap + (1 − a)r �l q �l
bp + (1 − b)r .

Now for the final argument. Since (L0,+, .) is a mixture space that satisfies the three axioms,
we have that %l admits a linear representation, say U , on L0. Thus, there exists u : X → R such
thatU (p) =

∑
x∈X

u(x)p(x) ∀ p ∈ L0. Next, defineW = U ◦ L, so that

W ( f ) =
∑
x∈X

u(x)L( f (x)) =
∑
x∈X

u(x)p f (x) =
∑
x∈X

u(x)µ( f −1(x))

Thus,W is "linear". Moreover,

f % g ⇔ L( f ) %l L(g ) (by definition of %l )

⇔ U ◦ L( f ) ≥ U ◦ L(g ) (sinceU represents %l )

⇔W ( f ) ≥W (g ) (by definition ofW )

Hence,W represents %.
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