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1 Preliminaries

So far we have treated probabilities over prizes as being given. In other words we have been only
dealing with objective probabilities. Savage argues that such a description offers limited insight
into the choice theoretic behaviors of individuals since the probabilities are assumed to be set by
nature or some exogenous elements. Let us consider a simple example to motivate Savage’s idea of
subjective probabilities.

Example 1. Suppose there is a tri-nation cricket tournament between India, Pakistan andAustralia. You
are asked the following question: Which team is most probable to win the tournament> You answer
India. Then you are asked the question: Which scenario do you think ismore likely -[Pakistan orAustralia
will win] or [India will win]? You answer the former is more likely! What can be inferred about your
subjective probabilities from these choices? If certain intuitive assumptions are satisfied, it is easy to see
that the choices expressed are consistent with- 12 > p(I ndia) > 1

3 , where p(I ndia) is the probability that
India will win the tournament.

In the savage style models, uncertainty its viewed as being subjective in the sense that there are
no objective (externally) imposed probabilities. Probabilities will enter the story, being part of the
eventual representation, but they will be supplied by the decision maker (DM) on the basis of his
subjective preferences. The basics of the Savage formulation are:

(i) a set of prizes or consequences, denoted X , and

(ii) a set of states of the world or of nature denoted by Ω with typical element s . Each s ∈ Ω is
a compilation of all characteristics/factors about which the DM is uncertain and which are
relevant to the consequences that will ensue form his choice. The set Ω is to be an exhaustive
list of mutually exclusive states.

The Savage formulation is a remarkable achievement both on philosophical andmodeling grounds.
We will discuss more of it later. But, is it necessary to go as far as Savage and have all uncertainty as
subjective? Can’t we agree (if only as a "thought experiment") that there are objective randomizing
devices such as fair coins, perfect dice, balanced roulette wheels, urns filled with colored balls, etc.?
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If we can, then a lot of difficulty that Savage encounters can be eliminated using a "middle of the
road" formulation and development due to Anscombe and Aumann.

Anscombe-Aumann setup. The setup starts the same way as Savage with X and Ω. Let X be an
arbitrary set and Ω be finite. AS before L(X ) is the set of simple probability distributions on X .
Since the context is obvious, we use just L to denote this set. The choice space is given by H = LΩ.
The representation we seek is:

There exists functions π : Ω→ [0, 1] with
∑

s∈Ω π(s) = 1 and u : X → R such that

ℎ % ℎ
′

iff
∑
s∈Ω

π(s)
[ ∑
x∈X

ℎ(s)(x)u(x)
]
≥
∑
s∈Ω

π(s)
[ ∑
x∈X

ℎ
′

(s)(x)u(x)
]

(℘)

Note that for each s ∈ Ω, ℎ(s) is a distribution on X . Also for notational convenience let Ω =
{1, 2 . . . , n}. Then H is the set of all functions ℎ : Ω→ L. We shall write ℎ(s) and ℎs interchange-
ably so that every ℎ ∈ H has the form

ℎ = {ℎ1, ℎ2, . . . , ℎn}

where ℎs ∈ L for each s = 1, 2, . . . , n.
each ℎ ∈ H is a compound lottery- the horse race is run and if outcome is s , the randomizing

devices are used to construct simple probability distribution ℎs .

2 State Dependent Representation

For ℎ and g in H and a ∈ [0, 1], define aℎ + (1 − a)g by

(aℎ + (1 − a)g )(s) = aℎ(s) + (1 − a)g (s) ∀s ∈ Ω

That is two compound lotteries are "mixed" by mixing the objective lotteries that comprise them.
Note that (H ,+, .) forms a mixture space. Revisiting the axioms:

Axiom A1: % on H is a preference relation.

Axiom A2: For all ℎ, ℎ′, g ∈ H , ℎ � ℎ′ and a ∈ (0, 1) =⇒ aℎ + (1 − a)g � aℎ′ + (1 − a)g .

Axiom A3: For all ℎ, ℎ′, ℎ′′ ∈ H , ℎ � ℎ′ � ℎ"" =⇒ ∃a, b ∈ (0, 1) such that aℎ + (1− a)ℎ′′ �
ℎ′ � bℎ + (1 − b)ℎ′′.

We can now state the following theorem:

Theorem 1. Let % be a binary relation on H . Then % satisfies Axioms A1-A3 iff there exists function
us : X → R for each s = 1, 2 . . . , n such that

ℎ % g iff
n∑
s=1

∑
x∈X

ℎs (x)us (x) ≥
n∑
s=1

∑
x∈X

gs (x)us (x) (n)
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Moreover, if u′1, u
′

2, . . . , u
′

n is another collection of function satisfying the above condition, then there
exist constants a > 0 and bs > 0 such that u′s = au s + bs for each s.

Proof. That such a representation implies the three axioms hold is simple and can be done as before
in vNM.

Assume Axioms A1-A3 hold. since H is a mixture space, we know by the Mixture Space
Theorem that there exists a functionU : H → R such that

ℎ % g iffU (ℎ) ≥ U (g ). and,

U (aℎ + (1 − a)g ) = aU (ℎ) + (1 − a)U (g ) ∀a ∈ [0, 1]

Moreover, thisU is unique unto positive affine transformations. We will now show that it has the
form

U (ℎ) =
n∑
s=1

∑
x∈X

ℎs (x)us (x).

for some functions u1, u2, . . . , un. To do this, fix some ℎ∗ ∈ H . For any ℎ ∈ H let ℎ1 =
(ℎ1, ℎ∗2, . . . , ℎ

∗
n), ℎ2 = (ℎ∗1, ℎ2, . . . , ℎ

∗
n), etc. That is ℎ s is ℎ∗ but with ℎs replacing ℎ∗s . Observe

that

1
n
ℎ +

n − 1
n

ℎ∗ =
n∑
s=1

1
n
ℎ s (�)

Thus by the linearity ofU and standard induction arguments, we get

1
n
U (ℎ) +

n − 1
n

U (ℎ∗) =
n∑
s=1

1
n
U (ℎ s ). (�)

For s = 1, 2, . . . , ndefineUs : L → R by

Us (p) = U (ℎ∗1, . . . , ℎ
∗
s−1, pℎ

∗
s+1, . . . , ℎ

∗
n) −

n − 1
n

U (ℎ∗) (†)

Thus for ℎ ∈ H , this definition gives

Us (ℎs ) = U (ℎ s ) −
n − 1
n

U (ℎ∗)

Summing this last equation over s and dividing by n yields,

1
n

n∑
s=1

Us (ℎs ) =
1
n

n∑
s=1

U (ℎ s ) −
n − 1
n

U (ℎ∗)
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Comparing this with (�), we have

U (ℎ) =
n∑
s=1

Us (ℎs )

Now (†) and linearity ofU yield

Us (ap + (1 − a)q) = aUs (p) + (1 − a)Us (q).

Finally, for each x ∈ X , define us (x) = Us (δx )- then the usual induction argument, using the fact
that the support of L is finite, like in proposition ??, shows that

Us (p) =
∑
x∈X

p(x)Us (δx ) =
∑
x∈X

p(x)us (x).

Thus,

U (ℎ) =
n∑
s=1

Us (ℎs ) (shown above)

=

n∑
s=1
[
∑
x∈X

ℎs (x)us (x)]

This establishes the desired representation. �

Remark 1. Note that basic representation follows immediately from the Mixture Space Theorem. The
challenge really was to get a characterization of the kind we managed in Proposition ??. We could call
this characterization the state dependent linear representation!

3 State Independent Representation

Go back to section 3.1 and stare at identity ℘. Now proceed to theorem 1 and look at expression
n. We did not exactly prove what we had set out to do. Where is the disconnect? It is the u with
and without the subscripts! We want there to be a single function u : X → R and a probability
distribution µ on the states of the world Ω = {1, 2, . . . , n} such that

ℎ % g iff
n∑
s=1

µ(s)
[ ∑
x∈X

ℎs (x)u(x)
]
≥

n∑
s=1

µ(s)
[ ∑
x∈X

gs (x)u(x)
]

(℘′)

Since expression n is necessary and sufficient for the three mixture space axioms, we need to go
looking for more axioms. First rule out the trivial case where ℎ ∼ g for all ℎ, g ∈ H .

Axiom A4: There exists ℎ and g in H such that ℎ � g .

Next consider the following definition.

Definition 1. State s is said to be Null if ℎ ∼ g for ll pairs ℎ and g such that ℎs′ = gs′ for all s
′

, s.
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That is, if we can’t find compound lotteries that differ only in the sth component and that are
not indifferent to each other, then the sth state of nature can be ignored and is called null. Note the
following corollary as a result of this definition.

Corollary 1. Let % satisfy Axioms A1-A3 and let {us, s = 1, 2, . . . , n} represent % in the sense of expres-
sion n. Then state s is null iff us is constant on X.

The key to getting expression ℘′ from expression n is the following axiom.

Axiom A5: If ℎ ∈ H , p, q ∈ L are such that

(ℎ1, . . . , ℎs−1, p, ℎs+1, . . . , ℎn) % (ℎ1, . . . , ℎs−1, q, ℎs+1, . . . , ℎn)

for some s , then for all non-null s ′,

(ℎ1, . . . , ℎs′−1, p, ℎs′+1, . . . , ℎn) % (ℎ1, . . . , ℎs′−1, q, ℎs′+1, . . . , ℎn).1

That is, if p is better q in state s , then p is better than q in all non-null states s ′. This is a very strong
axiom and will fail to hold most applications.

Example 2. Suppose that states are possible weather types instead of results of horse races and prizes are
bundles of picnic equipment. To be precise suppose Ω = {sℎine, r ain}, and p = δx, q = δx′ , where x
and x ′ are identical bundles of equipment except that x has an umbrella and x ′ does not. Presumably
DM strictly prefers to have x to x ′ in state 2 (rain), but is at least indifferent in state 1. Of course in
this example we wouldn’t (or rather shouldn’t) expect a state independent expected utility representation-
tastes are quite clearly state dependent.

Theorem 2. Axioms A1-A5 are necessary and sufficient for there to exist a non constant utility function
u : x → R and a probability distribution µ on Ω such that

ℎ % g iff
n∑
s=1

µ(s)
[ ∑
x∈X

ℎs (x)u(x)
]
≥

n∑
s=1

µ(s)
[ ∑
x∈X

gs (x)u(x)
]

Moreover, the probability distribution is unique, and u is unique up to a positive affine transformation
in this representation.

Proof. Suppose the axioms hold. Then A1-A3 imply a representation in the form of (n). Moreover,
by A4 there is atleast one non-null state-let s0 be one such. Take p, q ∈ L and let s be a non-null

1Prof. Gul introduces this cool notation. For each s ∈ Ω and p ∈ L, let ℎ sp = (ℎ1, . . . , ℎs−1, p, ℎs+1, . . . , ℎn). Then
the axiom becomes, if ℎ sp % ℎ sq for some s , then ℎ s

′ p % ℎ s
′q for all non-null s ′ .
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state. Then by the state dependent representation, for arbitrary ℎ,∑
x∈X

us (x)p(x) ≥
∑
x∈X

us (x)q(x) iff ℎ sp % ℎ sq

iff ℎ s
0p % ℎ s

0q (by A5)

iff
∑
x∈X

us0(x)p(x) ≥
∑
x∈X

us0(x)q(x)

By the uniqueness result for vNM expected utility for simple lotteries this says that there exists
constants as > 0 and bs such that

asus0(.) + bs = us (.).

For the null states such constants exist as well- but with as = 0, since s is null if and only if us is
constant. So if we define u(.) = us0(.), (n) becomes

ℎ % g iff
n∑
s=1

∑
x∈X

ℎs (x)(asu(x) + bs ) ≥
n∑
s=1

∑
x∈X

gs (x)(asu(x) + bs ).

which simplifies to

ℎ % g iff
n∑
s=1
[bs + as (

∑
x∈X

ℎs (x)u(x))] ≥
n∑
s=1
[bs + as (

∑
x∈X

gs (x)u(x))]

Cancel the identical bs on both sides.2 Divide both sides by the strictly positive term
∑

s as and
then define µ(s) = as∑

s as
. We have (℘′) as desired.

(Still have to show converse and uniqueness.) �

2Who needs BS anyway?
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