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1 Preliminaries and linear representation

Let X be a finite set of prizes. Let L(X ) be the set of lotteries on X , i.e.,

L(X ) = {p : X → [0, 1]|
∑
x∈X

p(x) = 1}

To simplify notation1 we will use % for a preference relation and � for a K -preference relation and
also use there for the corresponding derived binary relationships (e.g. �%≡� etc.). The context
should be clear in each case.

For any x ∈ X , δx denotes the lottery that chooses x with certainty. That is ,

δx (y) =
{ 1 if y = x
0 if y , x

Let any p, q ∈ L(X ) and a ∈ [0, 1]. Then ap + (1 − a)q ∈ L(X ) and is often referred to as a
compound lottery. Dixit writes

A general presumption of standard microeconomic theory is that people care only about what

they finally get to consume, and not by the path or process by which they arrived at this con-

sumption vector. This is sometimes called the compound lottery axiom or the reduction of

compound lotteries. This axiom will be violated if the decision-maker likes or dislikes the pro-

cess by which uncertainty is resolved; for example he may enjoy the suspense that builds up as

a lottery yields a prize that is another lottery, or he may find it worrying.

In this chapter, we will assume that the compound lottery axiom.
We say thatU : L(X ) → R is linear if

U (ap + (1 − a)q) = aU (p) + (1 − a)U (q) ∀p, q ∈ L(X ) and a ∈ [0, 1]

We say thatU is a linear representation of % ifU is linear and represents %.

1Prof. Gul says "The gloves are now off!"
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Proposition 1. If U is a linear function on L(X ), then there exists a real-valued function u on X such
that U (p) =

∑
x∈X p(x)u(x) for all p ∈ L(X ).

Proof. For any x ∈ X define u(x) = U (δx ). Further, for any p ∈ L(X ), define Sp = {x ∈ X |p(x) >
0}. Sp is basically the support of p. We prove the result by induction on |Sp |.

If |Sp | = 1, then the claim is trivial. We have u(x) = U (δx ) where {x} = Sp . Suppose we have
shown the result for |Sp | = k. We claim that it holds for |Sp | = k + 1.

Fix any x ∈ X . Note that, any p ∈ L(X ) can be written as,

p = p(x)δx + (1 − p(x))q

where

q(z) =
{ 0 if z = x

p(z)
1−p(x) if z , x .

Clearly, q ∈ L(X ) and |Sq | = k. Therefore, by the induction hypothesis,U (q) =
∑

z ∈x q(z)U (δz ).
Thus,

U (p) = p(x)U (δx ) + (1 − p(x))U (q) =
∑
z ∈X

p(z)U (δz )

and we are done. �

If X was an arbitrary srt, the above construction works if we consider L(X ) to be the set of
all simple lotteries on X .2 Note that even if X is countably infinite and we consider non-simple
lotteries, the above construction does not work.

2 von Neumann-Morgenstern Expected Utility

von Neumann-Morgenstern were one of the first to provide a full theory of expected utility in an
axiomatic fashion. It is important to note that the vNM model views uncertainty as objective, in
the sense that there is given a quantification of how likely the various outcomes are, given in the
form of a probability distribution. The other view by Savage regards uncertainty as subjective,
which we will discuss later.

Axiom 1: % is a preference relation.

Axiom 2: For all p, q, r ∈ L(X ), p � q and a ∈ (0, 1) =⇒ ap + (1 − a)r � aq + (1 − a)r .

Axiom 3: For all p, q, r ∈ L(X ), p � q � r =⇒ ∃ a, b ∈ (0, 1) such that ap + (1 − a)r �
q � bp + (1 − b)r .

2A simple lottery is a lottery with a finite support.
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Axiom 2 is often called the independence or substitution axiom, and Axiom 3 is often called the
Archimedean or continuity axiom.

Theorem 1. Let X be a finite set and % be a binary relation on L(X ). Then, % satisfies Axioms 1-3 iff
it has a linear representation.

Proof. We break the proof into the following lemmas.

Lemma 1. If % satisfies Axioms 1-3, then:

(i) p � q and 0 ≤ a < b ≤ 1 =⇒ bp + (1 − b)q � ap + (1 − a)q

(ii) p % q % r and p � r =⇒ ∃ a unique a∗ ∈ [0, 1] such that q ∼ a∗p + (1 − a∗)r

(iii) p ∼ q and a ∈ [0, 1] =⇒ ap + (1 − a)r ∼ aq + (1 − a)r ∀r ∈ L(X ).
Proof of Lemma 1. (i) First consider the special case a = 0. Then, p � q and 0 ≤ b ≤ 1 with Axiom
2 imply bp + (1− b)q � bq + (1− b)q = q = ap + (1− a)q . Now let r = bp + (1− b)q and suppose
a > 0. Then, (a.b) < 1, and r � q and Axiom 2 together imply that

r = (1 −
a
b
)r +

a
b
r

� (1 −
a
b
)q +

a
b
r

= (1 −
a
b
)q +

a
b
(bp + (1 − b)q)

= ap + (1 − a)q .

(ii) Since p � r , part (i) ensures that if a∗ exists, it is unique. If p ∼ q , then a∗ = 1 works. If q ∼ r ,
then a∗ = 0 works. So we need to only consider the case p � q � r . Define

a∗ = sup{a ∈ [0, 1]|q % ap + (1 − a)r }

Since a = 0 is in the set, we know we aren’t taking supremum over an empty set.
By definition of a∗, if 1 ≥ a ≥ a∗, then ap + (1 − a)r � q . Moreover by (i), if 0 ≤ a ≤ a∗, then

q � ap+ (1− a)r . To see this, note that if 0 ≤ a ≤ a∗, then there exists a ′ such that 0 ≤ a ≤ a ′ ≤ a∗

and q % a ′p+(1−a ′)r by definition of a∗. And a < a ′ implies that q % a ′p+(1−a ′)r � ap+(1−a)r .
There are three possibilities to consider.
Suppose a∗p+ (1− a∗)r � q � r . Then by Axiom 3, there exists b ∈ (0, 1) such that b(a∗p+ (1−

a∗)r )+ (1−b)r � q , that is, b a∗p+ (1−b a∗)r � q . But b a∗ < a∗, so we have q � b a∗p+ (1−b a∗)r .
Contradiction.

Suppose p � q � a∗p + (1 − s∗)r . Then, by Axiom 3, there exists b ∈ (0, 1), such that
q � b(a∗p+ (1− a∗)r )+ (1−b)p, that is, q � (1−b(1− a∗))p+b(1− a∗)r . Since, (1−b(1− a∗)) > a∗,
we have from the above argument that (1 − b(1 − a∗))p + b(1 − a∗)r � q . Contradiction.

This leaves us with the third possibility (which is what we want), namely q ∼ a∗p + (1 − a∗)r .
(iii) This result is trivial for the case where, for all s ∈ L(X ), p ∼ q ∼ s . So suppose there is

some s ∈ L(X ) such that s � p ∼ q . (The other case where there is some s such that p ∼ q � s
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can be similarly done.) Let any r ∈ L(X ) and a ∈ [0, 1]. We want to show that ap + (1 −
a)r ∼ aq + (1 − a)r . Suppose ap + (1 − a)r � aq + (1 − a)r . From Axiom 2 we can deduce
that for all b ∈ (0, 1), b s + (1 − b)q � bq + (1 − b)q = q ∼ p. Using Axiom 2 again, we
get that a(b s + (1 − b)q) + (1 − a)r � ap + (1 − a)r , for all b ∈ (0, 1). Since (by assumption)
ap + (1 − a)r � aq + (1 − a)r , Axiom 3 implies that for each b there exists some a∗(b) such that
ap + (1 − a)r � a∗(b)(a(b s + (1 − b)q) + (1 − a)r ) + (1 − a∗(b))(aq + (1 − a)r ). Fix, say b = 1/2,
and let a∗(1/2) be written a∗; then we have that

ap + (1 − a)r � [a∗a/2]s + [a∗a/2 + (1 − a∗)a]q + [1 − a]r

But the term on the right hand side is

a[(a∗/2)s + (1 − a∗/2)q] + (1 − a)r

and since a∗/2, this must be � ap + (1− a)r , a contradiction. The case where we start by assuming
aq+(1−a)r � ap+(1−a)r will similarly lead to a contradiction. Thus, wemust have ap+(1−a)r ∼
aq + (1 − a)r . �

Lemma 2. If % on L(X ) satisfies Axioms 1-3, then there exists z̄ and z in X such that δz̄ % p % δz for
all p ∈ L(X ).

Proof. SinceX is finite, there exists z̄ and z in X such that δz̄ % δx % δz for all x ∈ X . Let any
p ∈ A(X ). We prove this by induction on the cardinality of Sp , where Sp = {x ∈ X |p(x) > 0}.

If |Sp | = 1, then p = δx for some x ∈ X , and we already know δz̄ % δx % δz . Suppose we have
shown the result for |Sp | = k. We claim that it also holds for |Sp | = k + 1.

Fix any x ∈ X . Note that p can be written as,

p = p(x)δx + (1 − p(x))q

where

q(z) =
{ 0 if z = x

p(z)
1−p(x) if z , x

Clearly, q ∈ L(X ) and |Sq | = k. Therefore, by induction hypothesis, δz̄ % q . Now δz̄ % δx =⇒

δz̄ � δx or δz̄ ∼ δx , and δz̄ % q =⇒ δz̄ � q or δz̄ ∼ q . Then using Axiom 2 and lemma 1(iii) we
can get

δz̄ = p(x)δz̄ + (1 − p(x))q

% p(x)δx + (1 − p(x))q

= p
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Thus δz̄ % p. Similarly we can show that p % δz .
�

Now we shall use the above lemmas to prove the main theorem. Suppose % satisfies Axioms
1-3. Apply lemma 2 to produce δz̄ and δz . If δz̄ ∼ δz , then set U (p) = π for all p ∈ L(X ), and we
are done. So for the rest of the proof we consider the case δz̄ � δz . For p ∈ L(X ), define,

U (p) = a where aδz̄ + (1 − a)δz ∼ p

By lemma 1(ii) such an a exists and is unique, so U is well defined. We claim that this U will do
the job for us.

For all p, q ∈ L(X ) and a ∈ [0, 1], by applying lemma 1(iii) twice, we get

ap + (1 − a)q ∼ a[U (p)δz̄ + (1 −U (p))δz ] + (1 − a)[U (q)δz̄ + (1 −U (q))δz ]

= [aU (p) + (1 − a)U (q)]δz̄ + [1 − aU (p) − (1 − a)U (q)]δz

Thus by definition ofU ,

U (ap + (1 − a)q) = aU (p) + (1 − a)U (q).

This shows thatU is linear.
Finally we want to show thatU represents %. We claim that

U (p) ≥ U (q) iffU (p)δz̄ + (1 −U (p))δz % U (q)δz̄ + (1 −U (q))δz

If U (p) = U (q), then the two lotteries are equal. Suppose U (p) > U (q). Then by lemma 1(i), we
haveU (p)δz̄ + (1 −U (p))δz � U (q)δz̄ + (1 −U (q))δz .

Conversely, suppose U (p)δz̄ + (1 − U (p))δz % U (q)δz̄ + (1 − U (q))δz . If we were to have
U (q) > U (p), then by lemma 1(i) would give usU (q)δz̄ + (1 −U (q))δz � U (p)δz̄ + (1 −U (p))δz ,
which is a contradiction. Thus, we must haveU (p) ≥ U (q), which completes our claim.

Now suppose % has a linear representation. That is, there existsU : X → R such that

U (ap + (1 − a)q) = aU (p) + (1 − a)U (q) ∀p, q ∈ L(X ) and a ∈ [0, 1]

and p % q iffU (p) ≥ U (q) ∀p, q ∈ L(X )

We want to show that Axioms 1-3 hold.
In the following discussion, let p, q, r be any elements in L(X ).
Consider p and q . Clearly, U (p) ≥ U (q) or U (q) ≥ U (p), that is, p % q or q % p. Next, let

p % q and p % r . Then,U (p) ≥ U (q) ≥ U (r ). Thus,U (p) ≥ U (r ) which implies p % r . Thus % is
complete and transitive and hence a preference relation. Axiom 1 is satisfied.

Next suppose p � q and let a ∈ (0, 1). Then U (p) > U (q). Now, U (ap + (1 − a)r ) =
aU (p) + (1 − a)U (r ) and U (aq + (1 − a)r ) = aU (q) + (1 − a)U (r ). Also, U (p) > U (q) implies
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aU (p) + (1 − a)U (r ) > aU (q) + (1 − a)U (r ), that isU (ap + (1 − a)r ) > U (aq + (1 − a)r ). Hence,
ap + (1 − a)r � aq + (1 − a)r which satisfies Axiom 2.

Finally, suppose p � q � r . Then,U (p) > U (q) > U (r ). Note that t ∈ [0, 1],

tU (p) + (1 − t )U (r ) > U (q) iff t >
U (q) −U (r )
U (p) −U (r )

, and

tU (p) + (1 − t )U (r ) < U (q) iff t <
U (q) −U (r )
U (p) −U (r )

Therefore, define

a =
U (p) −U (r ) + ε
U (p) −U (r )

and b =
U (q) −U (r ) − ε
U (q) −U (r )

where ε is chosen small enough so that a, b ∈ (0, 1). This will do the job. Thus, Axiom 3 is also
satisfied. �

Theorem 2. If U : L(X ) → R represents %, then a function V : L(X ) → R represents % iff there
exists real numbers c > 0 and b such that

V (p) = cU (p) + d ∀p ∈ L(X )

Proof. �

3 Mixture Space Theorem

This section is based mostly on the classic paper by Herstein and Milnor [1953].

Definition 1. Let Π be any set with two operations, viz. ⊕ and ◦, defined on it such that for eery
p, q ∈ Π and a, b ∈ [0, 1], we have a ◦ p ⊕ (1 − a) ◦ q ∈ Π, and the following properties are satisfied:

(1) 1 ◦ p ⊕ (1 − 1) ◦ q = p.

(2) a ◦ p ⊕ (1 − a) ◦ q = (1 − a) ◦ q ⊕ a ◦ p, and

(3) b ◦ [a ◦ p ⊕ (1 − a) ◦ q] ⊕ (1 − b) ◦ q = (ab) ◦ p ⊕ (1 − ab) ◦ q.

Then, (Π,⊕, ◦) is called a Mixture Space.

Note that ⊕ corresponds to the addition operation of real numbers and ◦ corresponds to the
multiplication operation of the real numbers. In fact the most obvious examples of the mixture
space would be any convex subset C of R, that is (C ,+, .). In what follows we write ′+′ for ⊕ and
′.′ for ◦. It makes life simple and the context should be obvious.3

3Then the three properties can be written as
(1) 1p + 0q = p,
(2) ap + (1 − a)q = (1 − a)q + ap, and
(3) b[ap + (1 − a)q] + (1 − b)q = (ab)p + (1 − ab)q .
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Remark 1. Note that if for a mixture space the following hold:

ap + (1 − a)p = p (∗)

and

b[ap + (1 − a)q] + (1 − b)[c p + (1 − c)q] = [ab + (1 − b)c]p + [b(1 − a) + (1 − b)(1 − c)]q (?)

where of course p, q ∈ Π, and a, b, c ∈ [0, 1].

Condition (∗) is straightforward. ap + (1− a)p = a[1p +0p]+ (1− a)p = a[0p +1p]+ (1− a)p =
0p+1p = 1p+0p = p where the first equality follows from part (1) of the definition, second follows
from part (2), third follows from part (3), the fourth follows from part (2) of the definition while
the last follows from part (1).

Exercise 1. Show that (?) holds.

Let (Π,+, .) be a mixture space and % isa binary relation on Π. Consider the following axioms:

Axiom 1′ : % is a preference relation.

Axiom 2′ : For all p, q, r ∈ Π, p � q and a ∈ (0, 1) =⇒ ap + (1 − a)r � aq + (1 − a)r .

Axiom 3′ : For all p, q, r ∈ Π, p � q � r =⇒ ∃ a, b ∈ (0, 1) such that ap + (1 − a)r � q �
bp + (1 − b)r .

As in the vNM model to prove the representation theorem we will need the help of some lemmas.
So we shoot the following:

Lemma 3. If % satisfies Axioms 1′ − 3′ , then:

(i) p � q and 0 ≤ a < b ≤ 1 =⇒ bp + (1 − b)q � ap + (1 − a)q

(ii) p % q % r and p � r =⇒ ∃ a unique a∗ ∈ [0, 1] such that q ∼ a∗p + (1 − a∗)r

(iii) p ∼ q and a ∈ [0, 1] =⇒ ap + (1 − a)r ∼ aq + (1 − a)r ∀r ∈ Π.

Proof. �

Theorem 3. SupposeΠ is a mixture space and% is a binary relation onΠ. then % satisfies Axioms 1′−3′

iff it has a linear representation.

Proof. �

The main difference in the proof here will be to get around the problem of best and worst prize
that used in Lemma 2.
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Remark 2. Note that in theorem 1, we found a linear representation when X is finite. Now let X be an
arbitrary set and L0(X ) the set of simple lotteries over X . Then, the set L0(X ) with the usual addition
and multiplication forms a mixture space. Thus using the Mixture Space theorem, it is easy to see that the
vNM expected utility result can be extended to an arbitrary set and the space of simple lotteries. A binary
relation % satisfying our favourite axiom has a linear representation of the form U : L0(X ) → R.
Moreover, note that in proving proposition 1 we did not use the finiteness of X , only the fact that the
support of the lotteries on X is finite. Thus, the same proposition holds for any arbitrary X and L0(X ).
Therefore, we have the following result:

Theorem 4. Let X be an arbitrary set and L0(X ) the set of simple lotteries over X . A binary relation
% satisfies Axioms 1-3 iff there exists a function U : L0(X ) → R that represents %. Also there exists
u : X → R such that U (p) =

∑
x∈X p(x)u(x) for all p ∈ L0(X ).
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