Preference, choice function, utility representation

Rohit Lamba
Pennsylvania State University
rlamba@psu.edu

January 2020

1 Preference relations

Let X be a finite set. Let R be a binary relation on X, that is, $R \subset X \times X$. We can write $(x, y) \in R$ or simply $x R y$.

A binary relation R is said to be

1. complete if for each $x, y \in X, x R y$ or $y R x$.
2. transitive if for each $x, y, z \in X, x R y$ and $y R z \Longrightarrow x R z$.
3. asymmetric if for each $x, y \in X, x R y \Longrightarrow \neg y R x .{ }^{1}$
4. negative transitive if for each $x, y, z \in X, x R y \Longrightarrow x R z$ or $z R y .{ }^{2}$
5. anti-symmetric if for each $x, y \in X, x R y$ and $y R x \Longrightarrow=y$.
6. acyclic if for each $\left\{x_{1}, \ldots, x_{n}\right\} \subset X, x_{i} R x_{i+1} \forall i=1, \ldots, n-1 \Longrightarrow \neg x_{n} R x_{1}$.

Definition 1. A binary relation that satisfies completeness and transitivity is called a preference relation.
Definition 2. A binary relation that satisfies asymmetry and negative transitivity is called a K-preference relation.

For any binary relation R, let $>_{R}$ denote the binary relation obtained from R as follows: $x>_{R} y$ iff $x R y$ and $\neg y R x$. Similarly define \sim_{R} by $x \sim_{R} y$ iff $x R y$ and $y R x$.

For any binary relation P, let \gtrsim_{P} by $x \gtrsim_{P} y$ iff $\neg_{y P} x$.
Proposition 1. A) R is a preference relation implies $>_{R}$ is a K preference relation.
B) P is a K-preference relation iff Z_{P} is a preference relation.
C) R is a preference relation implies $\gtrsim_{\gtrsim_{R}}=R$.
D) P is a K-preference relation implies $\gtrsim_{\gtrsim_{P}}=P$.

[^0]
2 Choice functions

For any nonempty set X, let $\mathcal{P}(X)$ denote the set of all nonempty subsets of X. A mapping c : $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$, is called a choice function if $c(A) \subset A$ for all $A \in \mathcal{P}(X)$. The interpretation is: If the decision maker (DM) is offered a choice of anything in the set A , he says that any member of $c(A)$ will do use fine. Choice functions are the building blocks of revealed preference theory.

Next, let $A, B \in \mathcal{P}(X)$.
Houthakker's Axiom. $c(A) \cap B \neq \emptyset \Longrightarrow c(B) \cap A \subset c(A)$.
Alternatively we can also write this as: if $x, y \in A$ and B and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$.

Sen's α Axiom: $c(A \cap B) \cap A \subset A$.
Alternatively we can also write this as: if $x \in B \subset A$ and $x \in c(A)$, then $x \in c(B)$. Sen's paraphrase of this is: If the world champion in some game is a Pakistani, then he must be the champion of Pakistan.

Sen's β Axiom. $c(A \cup B) \cap B \neq \emptyset$ implies $c(B) \subset c(A \cup B)$.
Alternatively we can also write this as: if $x, y \in c(A), A \subset B$ and $y \in c(B)$, then $x \in c(B)$. Sen's paraphrase of this is: If the world champion in some game is a Pakistani, then, all champions (in this game) of Pakistan are also world champions.

For any binary relation R on X, define two functions, $c(., R): \mathcal{P}(X) \rightarrow \mathcal{P}(X) \cup \emptyset$ and c_{R} : $\mathcal{P}(X) \rightarrow \mathcal{P}(X) \cup \emptyset$ as follows:

$$
\begin{aligned}
c(A, R) & =\{x \in A \mid \nexists y \in A \text { s.t. } y R x\} \\
c_{R}(A) & =\{x \in A \mid x R y \forall y \in A\}
\end{aligned}
$$

Now we state the two main theorems that characterize choice functions.
Theorem 1. If X is finite, then R is acyclic iff $c(., R)$ is a choice function.
Theorem 2. The choice function c satisfies the Houthakker's Axiom iff it satisfies Sen's Condition α and β iff \exists a preference relation R such that $c=c_{R}$.

3 Utility Representation

We say that the function $U: X \rightarrow \mathbb{R}$ represents the binary relation R if

$$
x R y \text { iff } U(x) \geq U(y) \forall x, y \in X .
$$

We say that the function $U: X \rightarrow \mathbb{R}$ K-represents the binary relation R of

$$
x R y \text { iff } U(x)>U(y) \forall x, y \in X .
$$

Proposition 2. U represents R iff it K-represents $>_{R}$, and U represents \gtrsim_{P} iff it K-represents P.
Next, we state the main characterization of preferences in terms of a utility function.
Theorem 3. For a finite set X and a binary relation R on X, there exists a function U that represents R iff R is a preference relation.

We can also prove a similar result when X is countably infinite.
Theorem 4. Let X be a countably infinite set and binary relation $R R$ on X, there exists a function U that represents R iff R is a preference relation.

[^0]: ${ }^{1} \neg a R b$ means not $a R b$.
 ${ }^{2}$ An alternate and equivalent way to define this is the following: R is negative transitive if for each $x, y, z \in$ $X, \neg x R y$ and $\neg y R z \Longrightarrow \neg x R z$.

