Preference, choice function, utility representation

Rohit Lamba Pennsylvania State University rlamba@psu.edu

January 2020

1 Preference relations

Let X be a finite set. Let R be a binary relation on X, that is, $R \subset X \times X$. We can write $(x, y) \in R$ or simply xRy.

A binary relation R is said to be

- 1. *complete* if for each $x, y \in X$, xRy or yRx.
- 2. *transitive* if for each $x, y, z \in X$, xRy and $yRz \implies xRz$.
- 3. asymmetric if for each $x, y \in X$, $xRy \implies \neg yRx$.¹
- 4. negative transitive if for each $x, y, z \in X$, $xRy \implies xRz \text{ or } zRy.^2$
- 5. *anti-symmetric* if for each $x, y \in X$, xRy and $yRx \implies = y$.
- 6. *acyclic* if for each $\{x_1, \ldots, x_n\} \subset X$, $x_i R x_{i+1} \forall i = 1, \ldots, n-1 \implies \neg x_n R x_1$.

Definition 1. A binary relation that satisfies completeness and transitivity is called a preference relation.

Definition 2. A binary relation that satisfies asymmetry and negative transitivity is called a K-preference relation.

For any binary relation R, let $>_R$ denote the binary relation obtained from R as follows: $x >_R y$ iff xRy and $\neg yRx$. Similarly define \sim_R by $x \sim_R y$ iff xRy and yRx.

For any binary relation *P*, let \geq_P by $x \geq_P y$ iff $\neg_y P x$.

Proposition 1. *A) R* is a preference relation implies $>_R$ is a *K*-preference relation.

- *B) P* is a *K*-preference relation iff \geq_P is a preference relation.
- C) R is a preference relation implies $\gtrsim_{\geq R} = R$.
- D) P is a K-preference relation implies $\gtrsim_{\geq P} = P$.

 $^{^{1}\}neg aRb$ means not aRb.

²An alternate and equivalent way to define this is the following: R is negative transitive if for each $x, y, z \in X$, $\neg xRy$ and $\neg yRz \implies \neg xRz$.

2 Choice functions

For any nonempty set X, let $\mathcal{P}(X)$ denote the set of all nonempty subsets of X. A mapping $c : \mathcal{P}(X) \to \mathcal{P}(X)$, is called a choice function if $c(A) \subset A$ for all $A \in \mathcal{P}(X)$. The interpretation is: If the decision maker (DM) is offered a choice of anything in the set A, he says that any member of c(A) will do use fine. Choice functions are the building blocks of revealed preference theory.

Next, let $A, B \in \mathcal{P}(X)$.

Houthakker's Axiom. $c(A) \cap B \neq \emptyset \implies c(B) \cap A \subset c(A)$. Alternatively we can also write this as: if $x, y \in A$ and B and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$.

Sen's α Axiom: $c(A \cap B) \cap A \subset A$.

Alternatively we can also write this as: if $x \in B \subset A$ and $x \in c(A)$, then $x \in c(B)$. Sen's paraphrase of this is: If the world champion in some game is a Pakistani, then he must be the champion of Pakistan.

Sen's β Axiom. $c(A \cup B) \cap B \neq \emptyset$ implies $c(B) \subset c(A \cup B)$.

Alternatively we can also write this as: if $x, y \in c(A), A \subset B$ and $y \in c(B)$, then $x \in c(B)$. Sen's paraphrase of this is: If the world champion in some game is a Pakistani, then, all champions (in this game) of Pakistan are also world champions.

For any binary relation R on X, define two functions, $c(., R) : \mathcal{P}(X) \to \mathcal{P}(X) \cup \emptyset$ and $c_R : \mathcal{P}(X) \to \mathcal{P}(X) \cup \emptyset$ as follows:

$$c(A, R) = \{x \in A | \nexists y \in A \text{ s.t. } yRx\}$$
$$c_R(A) = \{x \in A | xRy \forall y \in A\}$$

Now we state the two main theorems that characterize choice functions.

Theorem 1. If X is finite, then R is acyclic iff c(., R) is a choice function.

Theorem 2. The choice function c satisfies the Houthakker's Axiom iff it satisfies Sen's Condition α and β iff \exists a preference relation R such that $c = c_R$.

3 Utility Representation

We say that the function $U: X \to \mathbb{R}$ represents the binary relation *R* if

$$xRy \text{ iff } U(x) \ge U(y) \ \forall x, y \in X.$$

We say that the function $U: X \to \mathbb{R}$ K-represents the binary relation R of

$$xRy$$
 iff $U(x) > U(y) \ \forall x, y \in X$.

Proposition 2. U represents R iff it K-represents \succ_R , and U represents \gtrsim_P iff it K-represents P.

Next, we state the main characterization of preferences in terms of a utility function.

Theorem 3. For a finite set X and a binary relation R on X, there exists a function U that represents R iff R is a preference relation.

We can also prove a similar result when X is countably infinite.

Theorem 4. Let X be a countably infinite set and binary relation RR on X, there exists a function U that represents R iff R is a preference relation.